Maximizing gene delivery efficiencies of cationic helical polypeptides via balanced membrane penetration and cellular targeting.

نویسندگان

  • Nan Zheng
  • Lichen Yin
  • Ziyuan Song
  • Liang Ma
  • Haoyu Tang
  • Nathan P Gabrielson
  • Hua Lu
  • Jianjun Cheng
چکیده

The application of non-viral gene delivery vectors is often accompanied with the poor correlation between transfection efficiency and the safety profiles of vectors. Vectors with high transfection efficiencies often suffer from high toxicities, making it unlikely to improve their efficiencies by increasing the DNA dosage. In the current study, we developed a ternary complex system which consisted of a highly membrane-active cationic helical polypeptide (PVBLG-8), a low-toxic, membrane-inactive cationic helical polypeptide (PVBLG-7) capable of mediating mannose receptor targeting, and DNA. The PVBLG-7 moiety notably enhanced the cellular uptake and transfection efficiency of PVBLG-8 in a variety of mannose receptor-expressing cell types (HeLa, COS-7, and Raw 264.7), while it did not compromise the membrane permeability of PVBLG-8 or bring additional cytotoxicities. Because of the simplicity and adjustability of the self-assembly approach, optimal formulations of the ternary complexes with a proper balance between membrane activity and targeting capability were easily identified in each specific cell type. The optimal ternary complexes displayed desired cell tolerability and markedly outperformed the PVBLG-8/DNA binary complexes as well as commercial reagent Lipofectamine™ 2000 in terms of transfection efficiency. This study therefore provides an effective and facile strategy to overcome the efficiency-toxicity poor correlation of non-viral vectors, which contributes insights into the design strategy of effective and safe non-viral gene delivery vectors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconfiguring the architectures of cationic helical polypeptides to control non-viral gene delivery.

Poly(γ-4-((2-(piperidin-1-yl)ethyl)aminomethyl)benzyl-l-glutamate) (PPABLG), a cationic helical polypeptide, has been recently developed by us as an effective non-viral gene delivery vector. In attempts to elucidate the effect of molecular architecture on the gene delivery efficiencies and thereby identify a potential addition to PPABLG with improved transfection efficiency and reduced cytotoxi...

متن کامل

The effect of side-chain functionality and hydrophobicity on the gene delivery capabilities of cationic helical polypeptides.

The rational design of effective and safe non-viral gene vectors is largely dependent on the understanding of the structure-property relationship. We herein report the design of a new series of cationic, α-helical polypeptides with different side charged groups (amine and guanidine) and hydrophobicity, and mechanistically unraveled the effect of polypeptide structure on the gene delivery capabi...

متن کامل

Redox-responsive, reversibly-crosslinked thiolated cationic helical polypeptides for efficient siRNA encapsulation and delivery.

Cationic helical polypeptides, although highly efficient for inducing membrane penetration, cannot stably condense siRNA molecules via electrostatic interactions, which greatly limit the gene knockdown efficiency. By developing and crosslinking the thiolated polypeptide via formation of disulfide bonds post formation of the polypeptide/siRNA complexes, we were able to obtain stable complexes wi...

متن کامل

Reactive and bioactive cationic α-helical polypeptide template for nonviral gene delivery.

Polypeptides were the first set of materials considered for use as nonviral gene delivery vectors. With its ability to bind and condense anionic plasmid DNA, cationic poly-l-lysine (PLL) was one of the most well studied of the early gene delivery polypeptides. Unfortunately, as a DNA delivery vector, unmodified PLL suffered from low transfection efficiency. Although there have been tremendous e...

متن کامل

Light-responsive helical polypeptides capable of reducing toxicity and unpacking DNA: toward nonviral gene delivery.

Nonviral gene delivery with synthetic cationic polymeric vectors is widely recognized as an attractive alternative to viral gene delivery, which suffers from inherent immunogenicity and various side effects. The transfection efficiency and chemotoxicity of these polymeric vectors are often closely related to the density of their cationic charge. Materials with low charge density usually show lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 35 4  شماره 

صفحات  -

تاریخ انتشار 2014